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At high Reynolds numbers, the logarithmic range in wall-bounded flows spans many scales. An

important conceptual modeling framework of the logarithmic range is Townsend’s attached eddy

hypothesis (Townsend, 1976, The structure of turbulent shear ow), where high Reynolds number

wall-bounded flows are modeled as assemblies of space-filling, self-similar, and wall-attached eddies.

Recently, Yang et al. (Yang, Marusic, Meneveau, 2016, Phys. Rev. Fluids, 1, 024402) re-interpreted

this hypothesis, and developed the “hierarchical random additive process” model (HRAP), which

provides further insights into the scaling implications of the attached eddies. For example, in a recent

study (Yang, Baidya, Johnson et al. Phys. Rev. Fluids, 2(6), 064602), the HRAP model was used for

making scaling predictions of the second-order structure function
〈
(u′
i(x)− u′

i(x
′))(u′

j(x)− u′
j(x

′))
〉

in the logarithmic range, where ui’s are the velocity fluctuations in the ith Cartesian direction. Here,

we provide empirical support for this HRAP model using high-fidelity experimental data of all three

components of velocity in a high Reynolds number boundary layer flow. We show that the spanwise

velocity fluctuation can be modeled as a random additive process, and that the wall-normal velocity

fluctuation is dominated by the closest neighboring wall-attached eddy. By accounting for all the

three velocities in all the three Cartesian directions, the HRAP model is formally a well rounded

model for the momentum-carrying scales in wall-bounded flows at high Reynolds numbers.

I. INTRODUCTION

Wall-bounded flows are often encountered in engineering and geophysical applications. Near the wall, the flow

is dominated by viscous effects, and away from the wall, the flow is subject to large-scale boundary effects. At

high Reynolds numbers (Reynolds numbers that are relevant for aerodynamics and geophysics), a logarithmic range

emerges between viscosity-dominated near-wall scales and the bulk-range scales [1, 2]. Many efforts have been devoted

to modeling the flow within the logarithmic range (see, e.g., Refs. [3–6]), and an important modeling framework is

provided by the attached-eddy hypothesis. The attached-eddy model was pioneered by Townsend [7], then extended

by Perry, Chong, Marusic and co-authors by accounting for wake effects, vortex clustering, and spatial exclusion of the

wall-attached eddies of the same size [3, 8–11]. A comprehensive review of the works as related to the hypothesis may

be found in Ref. [12]. Briefly, the attached-eddy hypothesis models the high Reynolds number boundary layer flows

as assemblies of space-filling, self-similar, and wall-attached eddies (see a sketch of the modeled boundary-layer flow

in Fig. 1); and velocity fluctuations at a generic location in the flow field are modeled by adding up the eddy-induced

velocities there. Earlier works as related to the attached-eddy idea have mostly relied on a few specifically-shaped

eddies (e.g., Λ-eddy, Ω-eddy, etc. [9, 10]), and there was only limited discussion on the scaling implications of the

attached eddies. Recent works by Meneveau, Marusic, Lohse and co-authors have led to new insights into the scaling

implications of the attached eddies [5, 6, 13, 14], and one notable development was the “hierarchical random additive

process” model (HRAP), where the eddy-induced velocities are modeled as random addends:

u =

Nz∑
i=1

ai, (1)

where i is an integer, and ai’s are addends that models the eddy-induced velocities at the wall-normal height z. Frisch

referred to multifractal models as “hierarchical intermittency models” [15], where the term hierarchical refers to a
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FIG. 1. A sketch of the modeled turbulent boundary layers at high Reynolds numbers. Three hierarchies of attached eddies

(inclined solid lines) are sketched. The number of visible eddies on a vertical cut (as is sketched here) doubles as the sizes of

the eddies halve. The velocity fluctuation at a generic point in the flow field is an additive superposition of the eddy-induced

velocities.

collection of scales. The term “hierarhical” was also used to refer to “relative importance of entities within a group”

in Ref. [16]. The term “hierarchical” in “hierarchical random additive process” refers to a collection of scales, and

there is no relative importance between the scales. Throughout the paper, we will use u, v and w for the streamwise

(x), spanwise (y) and wall-normal (z) velocity fluctuations, respectively. The number of contributing eddies can be

computed by integrating the eddy population density P (z) from z to the boundary-layer height

Nz =

∫ δ

z

P (z′)dz′ ∼ log(δ/z), (2)

where the eddy population density P (z) ∼ 1/z is inversely proportional to the wall-normal distance (see Fig. 1). This

compact form proves to be quite useful. For example, it directly follows from Eq. (1) that

〈
u2
〉

=

(
Nz∑
i=1

ai

)2

= Nz
〈
a2
〉
∼ log(δ/z), (3)

i.e., the logarithmic scaling of
〈
u2
〉

as a function of the wall-normal distance, where 〈·〉 is the ensemble average of the

bracketed quantity, δ is the boundary layer height, ai’s are identically, independently distributed random addends

(i.i.d., 〈aiaj〉 = 0 for i 6= j, and a is a random variable that has the same statistical properties as ai). Determining

the constants in Eq. 3, i.e., the slope and the intercept of the logarithmic scaling, requires knowledge of the statistical

properties of the addends ai. However, this is not straight-forward, as it is difficult, if not impossible, to extract an

attached eddy from a turbulent flow field. Nonetheless, we will demonstrate that by assuming the addends to follow

a Gaussian behavior and quantifying deviations from the resulting Gaussian statistics, a new physical insight of the

wall-bounded flow can be obtained.

Unless otherwise noted, we will use the wall units, i.e., the friction velocity uτ and the viscous length scale ν/uτ , for

normalization. The HRAP model has been used to provide scaling estimates for velocity moment-generating-functions

[17] and velocity structure functions [18], and quantities that involve the wall-shear stress fluctuations and fluctuations

of passive scalars [19] in wall-bounded flows at high Reynolds numbers. However, so far, the model is formally only

for the streamwise velocity fluctuation.

Due to the experimental challenges associated with accurately measuring the weaker spanwise and wall-normal

fluctuations compared to the streamwise counterpart in a wall turbulent flow, traditionally the focus of near-wall tur-

bulence modeling has been on the u velocity. However, advancements in computational capabilities and measurement

techniques over the past two decade have led to renewed interest in the spanwise and wall-normal velocity components.

For example, del Alamo et al. [20] found evidence of wall-scaling in two-dimensional spectra for all three velocity

components. Furthermore, Krug et al. [21] showed universality across a wide range of flows for the streamwise and

spanwise velocities using an extended form (i.e. the ratio between two structure functions of different orders). Ac-

cess to three-dimensional volume in direct numerical simulation (DNS) allows two-point statistics to be constructed,
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which captures the bulk contribution to the u, v and w velocities from features that remain coherent in the order

of δ [22]. As the two-point statistics are obtained by ensembling in time, they are symmetric in the homogeneous

direction. However, Sillero et al. [22] found that instantaneously the area occupied by the positive and negative

spanwise velocities in a wall-parallel plane from a channel DNS have tendency to be oblique and inclined at ±45◦ to

the flow direction in the wake region. Since the likelihood of negative or positive spanwise velocity is equal, this leads

to a squarish-shaped two-point correlation function. Furthermore, de Silva et al. [23] found that the obliqueness of

spanwise velocity extend into the log region if conditioned both on the sign of the streamwise and spanwise velocities,

based on wall-parallel large field of view particle image velocimetry (PIV) experiments in turbulent boundary layers.

Motivated by these new insights gained in the spanwise and wall-normal components, here we aim to extend the work

of Yang et al. [6] to include these velocity components.

The rest of the paper is organized as follows. In section II, we detail the model formalism for the spanwise and the

wall-normal velocity fluctuations. The model is tested in section III and conclusions are given in section IV. We use

the cross-wire measurements of boundary layer flow at Reτ ≈ 10 000 for testing the model. Details of the dataset can

be found in Refs. [24, 25].

II. A HRAP MODEL FOR THE SPANWISE AND WALL-NORMAL VELOCITY FLUCTUATIONS

Following Ref. [18], the spanwise velocity fluctuation at a wall-normal height z is modeled as

v =

Nz∑
i=1

bi, (4)

where bi are i.i.d. addends (but possibly with a different distribution than the ai’s in Eq. 1). For now, we make

the simplification that bi and ai are independently distributed. Because of the wall blocking effect, the wall-normal

fluctuation is dictated by the closest neighboring attached eddy

w = −CwaNz , (5)

where aNz is the last additive in Eq. (1), and Cw is a positive constant. A formal discussion of the locality of the

wall-normal velocity fluctuation may be found in, e.g., Refs. [3, 7]. Here, we only briefly recap the basic ideas in Refs.

[3, 7]. Consider, for example, two wall-attached eddies that are very different in their sizes. Figure 2 shows a sketch

of such two wall-attached eddies. Let hB and hA be the heights of eddy-B and eddy-A, and let hA � hB . The sum of

the induced velocities in the wall-normal direction by eddy-A and its mirror at height h (denoted by a dot in figure

2) is approximately 0 because h/(hA − h) ≈ h/(hA + h) ≈ 1. (Note that in Ref. [7] prescription of a no-penetration,

slip surface with w(0) = 0 is equivalent to a mirrored eddy.) However, the sum of the induced velocities by eddy-B

and its mirror at the h is finite, because h/(hB −h) 6= hB/(hB +h). Hence the local eddy determines the wall-normal

velocity fluctuation. In addition to above arguments, Eq (1) and Eq (5) lead to

〈uw〉 ∼ −
Nz∑
i=1

〈aiaNz 〉 = −〈aNzaNz 〉 = −Const, (6)

i.e., the expected constant momentum flux in the logarithmic range.

The goal of this work is to provide empirical support for Eqs. (4), (5). However, because neither of the equations

can be directly verified, we will use Eqs. (4), (5) to make scaling estimates of various statistics and compare these

scalings to the experimental data. From a statistical perspective, central moments are useful tools for describing a

stochastic quantity. High-order moments emphasize large fluctuations, and the general behaviors are characterized

by low-order moments. However, central moments do not distinguish between positive and negative fluctuations,

and a complete statistical characterization of the turbulent velocities is provided by the moment generating functions
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FIG. 2. A sketch of two wall-attached eddies eddy-A and eddy-B (solid lines), along with their mirror eddies, eddy A′ and

eddy B′ (dashed lines). The induced velocity of a wall-attached eddy in a generic location in the flow is a sum of the induced

velocity of this eddy and its mirror. The induced velocities at the dotted location at height h are indicated using arrows with

the line types and colors in accordance with these of the sketched eddies.
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FIG. 3. Premultiplied p.d.f. of exp(qg) · P (g) for g being a zero-mean unit-variance Gaussian variable. The premultiplied

p.d.f.’s are normalized for better visualization. 〈exp(qg)〉 equals the area under the corresponding premultiplied p.d.f..

(MGFs), i.e., 〈exp(qv)〉 and 〈exp(q1v(x) + q2v(x+ r))〉 if two-point flow statistics are of interest. The MGFs, by

definition, can be used to compute central moments to arbitrary order

〈vm〉 =
∂m 〈exp(qv)〉

∂qm

∣∣∣∣
q=0

,

〈vm(x+ r)vn(x)〉 =
∂m

∂qm1

∂n

∂qn2
〈exp(q1v(x) + q2v(x+ r))〉

∣∣∣∣
q1=0,q2=0

,

where m, n are integers. The parameters q, q1 and q2 may be used to as dials to emphasize different parts of the

velocity probability density function (p.d.f.), e.g., a positive q emphasizes large positive v fluctuations and a negative

q emphasizes negative v fluctuations. For example, a sketch of the premultiplied p.d.f. exp(qg) ·P (g) is shown in Fig.

3, where g is Gaussian and P (g) ∼ exp(−g2). Different parts of the g-p.d.f. are emphasized when choosing different

q’s, and a large |q| emphasizes the tail of the p.d.f.. It is also worth noting that the MGFs as defined correspond to a

highly simplified and real-valued subset of the more general object described by the Hopf equation [26], which is an

equation of the generalized MGF,
〈
exp(i

∫
θ(x)u(x)dx3)

〉
. The Hopf equation describes the full N -point joint p.d.f of
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velocity fluctuations, where N is the total number of different spatial points needed for a complete description of the

flow. The interest in the Hopf equation comes from the fact that it is linear, and therefore self-contained, requiring

no closure [27]. Considering the usefulness of MGFs, our discussion will focus on the scalings of MGFs. We will make

scaling estimates of velocity MGFs, and test the model’s predicted scalings against the available experimental data.

Following the same arguments that lead to the power-law scaling of the streamwise MGFs [17, 28], i.e.,

〈exp(quu)〉 ∼ (δ/z)τu(qu), τu(qu) ∼ log(〈exp(qua)〉), (7)

Eq. (4) leads to

〈exp(qv)〉 = 〈exp(qb)〉Nz ∼ (δ/z)
τv(q)

, (8)

where the power-law exponent is

τv(q) ∼ log(〈exp(qb)〉), (9)

and b is a random addend that is statistically similar to the bi’s in Eq. (4). If the random addends bi are Gaussian

〈exp(qb)〉 ∼ exp(q2) [29], Eq. (9) leads to

τv(q) = Cq2, (10)

where C is a constant. Equations (8) and (10) may be used to compute the central moments of v,

〈
v2p
〉1/p

=

[
∂2p 〈exp(qv)〉

∂q2p

∣∣∣∣
q=0

]1/p
∼ [(2p− 1)!!]1/pA1,v log

(
δ

z

)
, (11)

leading to a logarithmic scaling of the even-order moment
〈
v2p
〉1/p

, where

A1,v =
d2

dq2
[
Cq2

]∣∣∣∣
q=0

= 2C. (12)

It is worth noting that the logarithmic scaling of
〈
v2
〉

(i.e., taking p = 1 in Eq. 11) was previously reported in, e.g.,

Refs. [30–32].

Gaussianality is but a crude approximation of real turbulence, and therefore the resulting Eq. 10 is also a crude

approximation of the power-law exponent τv(q). If we do not invoke the Gaussian assumption, per the definition of

τv(q), we know that τv(0) = 0 because 〈exp(0 · v)〉 = 1, and that d2k+1τv/dq
2k+1

∣∣
q=0

= 0, because
〈
v2k+1

〉
= 0. Here

k = 0, 1, 2, etc. is an integer. Using only the above two pieces of information, the central moments are〈
v2
〉

= A1,v log(δ/z)〈
v4
〉

= 3A2
1,v [log(δ/z)]

2
+ τ (4)

v (0) log(δ/z)〈
v6
〉

= 15A3
1,v [log(δ/z)]

3
+ 15τ (2)

v (0)τ (4)
v (0)[log(δ/z)]2 + τ (6)

v (0) log(δ/z),

(13)

where τ
(k)
v (0) is the kth derivative of τv(q) evaluated at q = 0, and A1,v = τ

(2)
v (0). At sufficiently high Reynolds

numbers and for z � δ, the first term dominates and Eq. 13 degenerates to Eq. 11. Hence, as far as the central

moments are concerned, invoking the Gaussianality or not leads to the same scaling predictions.

Evaluating two-point MGFs is slightly more involved than single-point MGFs. However, if we follow the steps in

Ref. [17], for relevant two-point displacement r in the streamwise direction (i.e., h = r tan(θ) being in the logarithmic

range, where θ is the inclination angle of a typical wall-attached eddy), the two-point MGF is

Wv(q1, q2; z, r) ≡ 〈exp(q1v(x) + q2v(x+ r))〉

∼ (z/δ)
−τv(q1)−τv(q2)

(r/δ)
Φv(q1,q2)

,
(14)
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where

Φv(q1, q2) = min[τv(q1) + τv(q2)− τv(q1 + q2), 1]. (15)

It follows from Eq. (14) that

Wv(q,−q; z, r) ∼ (r/δ)
min[τv(q)+τv(−q),1]

, (16)

i.e., a scaling transition at τv(q) + τv(−q) = 1. Equations (10) , (14) and (15) may be used to compute any two-point

central moments. For example,

〈v(x+ r)v(x)〉 =
∂

∂q1

∂

∂q2
W (q1, q2; z, r)

∣∣∣∣
q1=0,q2=0

=
∂

∂q1

∂

∂q2
(r/δ)−2Cq1q2

∣∣∣∣
q1=0,q2=0

= A1,v log(δ/r). (17)

The scaling transition is not relevant for deriving the central moments because q1, q2 are evaluated at q1 = 0, q2 = 0,

and at q1 = 0, q2 = 0, we have Φv(q1, q2) < 1. It then follows that〈
(v(x)− v(x+ r))2

〉
= 2

〈
v2
〉
− 2 〈v(x)v(x+ r)〉 = 2A1,v log(δ/z)− 2A1,v log(δ/r) ∼ log(r/z). (18)

Generally, the two-point MGFs can be used to compute 〈vm(x+ r)vn(x)〉 for arbitrarym and n. With 〈vm(x+ r)vn(x)〉
known, the even-order structure functions are known according to

〈
(v(x+ r)− v(x))2p

〉1/p
=

[
2p∑
n=1

Cn2p
〈
vn(x+ r)v2p−n(x)

〉]1/p

(19)

and one may verify that 〈
(v(x+ r)− v(x))2p

〉1/p ∼ log(r/z), (20)

where Cn2p = 2p!/[(2p− n)!n!], and second that

S1,v = 〈v(x)v(x+ r)〉 ∼ log (δ/r) , (21a)

S2,v =

[
3

2

〈
v2(x)v2(x+ r)

〉
− 1

2

〈
v4(x)

〉]1/2

∼ log (δ/r) , (21b)

S3,v =

[
5

2

〈
v3(x)v3(x+ r)

〉
− 3

4

(〈
v(x)v5(x+ r)

〉
+
〈
v5(x)v(x+ r)

〉)]1/3

∼ log (δ/r) . (21c)

The same scalings in Eqs. (20) and (21) were reported for the streamwise velocity counterpart in Ref. [6], although

a slightly different approach was taken in Ref. [6] for deriving these scalings.

In addition to the spanwise velocity MGFs, Eqs. (1), (4) and (5) give rises to power-law scalings of mixed MGF:

〈exp(quu+ qww)〉 =

〈
exp

(
qu

Nz∑
i=1

ai + qw(−aNz
)

)〉
=

〈
exp

(
qu

Nz−1∑
i=1

ai + (qu − qw)aNz

)〉

=

〈
exp

(
qu

Nz−1∑
i=1

ai

)〉
〈exp ((qu − qw)aNz )〉= 〈exp(qua)〉Nz−1 · 〈exp((qu − qw)a)〉

(22)

Next we will need to relate Nz − 1 to a wall normal distance, where 1 is an infinitesimal increment. For simplicity,

the random additive model uses a discretized representation of the wall normal coordinate, which works well in

most circumstances. However, in reality the hierarchies have a continuous distribution and hence Nz − 1 in discrete
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representation can be replaced by an analogous term log(δ/(z + dz)), where dz is an infinitestial increment. It then

follows from the above equation that

〈exp(quu+ qww)〉 ∼Ce((z + dz)/δ)−τu(qu) 〈exp(qua− qwa)〉

∼Ce(z/δ)−τu(qu)(1 + dz/z)−τu(qu) 〈exp(qua− qwa)〉

∼Ce(z/δ)−τu(qu) [1− τu(qu)dz/z] 〈exp(qua− qwa)〉

∼Ce(z/δ)−τu(qu) 〈exp(qua− qwa)〉 ,

(23)

where Cd, Ce are O(1) constants, τu(q) is the power-law scaling exponent of 〈exp(qu)〉, The statistical object

〈exp(quu+ qww)〉 provides a new perspective for conducting quadrant analysis. We can emphasize different com-

binations of u and w by choosing different values for qu and qw, e.g., a positive qu and a negative qw empha-

size events when u and w are positive and negative, respectively. The measured mixed MGFs may be compared

to the model, i.e., Eq. (22), which function is determined using only measurements of the streamwise velocity.

Measuring the combined p.d.f. of u and w, i.e., conducting conventional quadrant analysis, however, needs si-

multaneous measurements of both u and w. Last, in addition to 〈exp(quu+ qww)〉, the other quantity of inter-

est include W (qu, qw; z) = 〈exp(quu+ qww)〉 / 〈exp(quu)〉. Because the wall-normal velocity fluctuation is deter-

mined by the local attached eddy, and is statistically correlated to only the last addend in u, we may expect that

〈exp(quu+ qww)〉 ≈ 〈exp(quu)〉. It follows from Eqs. (7) and (22) that

W (qu, qw; z) = 〈exp(quu+ qww)〉 / 〈exp(quu)〉

∼ (z/δ)−τu(qu) 〈exp(qua− qwa)〉
(z/δ)−τu(qu)

= 〈exp(qua− qwa)〉

= exp(Cu(qu − qw)2),

(24)

is independent of the wall-normal distance, where we assume the addend a is Gaussian.

Before we compare the model predictions to data, we make a connection to the random multiplicative process, which

has been used to model the energy cascade process in isotropic turbulence (see, e.g., Ref. [33], and the references

cited therein). The energy cascade process is a hierarchical process, where turbulent kinetic energy transports from

large scales to small scales and lesser scales, until it is dissipated at viscous scales. The random multiplicative models

of above process is as follows

εl =

Nl∏
i=1

mi, (25)

where εl is the instantaneous coarse-grained dissipation rate at the scale l, mi’s are identically, independently dis-

tributed random multiplicative, and may be interpreted as the energy transfer rate from a large-scale mother eddy to

its next small-scale daughter eddy, the number of multiplicatives depends on the number of cascade steps from the

integral scale L to the scale l, and is Nl ∼ log(L/l). If one takes logarithm of Eq. 25, the multiplicative process be-

comes an additive process, thus presenting to us an exact analogy between the energy cascade in isotropic turbulence

and the momentum transport process in wall-bounded flows [1], which is probably already clear from Fig. 1. If the

model predictions in this section can be found in data, it would be highly suggestive that a hierarchical structure that

exists in the energy cascade process may also exist in the momentum transport process in wall-bounded turbulence.

III. RESULTS

The purpose of this work is to provide empirical support to Eq. (4) and Eq. (5), and the model is validated if the

predicted scalings are found in the data. We use cross-wire measurements of boundary layer flows at Reτ ≈ 10, 000,
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FIG. 4. Color contours are the combined p.d.f. of u and v at a wall-normal height in the logarithmic range, z+ = 600,

z/δ = 0.06 in a Reτ ≈ 10, 000 boundary layer [24, 25]. Cross wire data are used here. Line contours are the product of the

p.d.f. of u and the p.d.f. of v. The contour levels are evenly spaced, and the exact values of the contour levels are not relevant

here.

and compare the data to the predicted scalings in the previous section. We will also provide supporting evidence to

a few modeling assumptions, e.g., the assumption of addends bi’s in Eq. (4) and the addends ai’s in Eq. (1) being

statistically independent.

A. Statistical independency of the addends contributing to u and v

Figure 4 shows the combined p.d.f. of the streamwise velocity fluctuation u and the spanwise velocity fluctuation v,

P (u, v), at a wall-normal height nominally in the logarithmic region (z+ ≈ 600; z/δ ≈ 0.06). The combined p.d.f. is

compared to P (u) · P (v) (shown as line contours), where P (·) is the p.d.f. of the bracketed quantity. Figure 4 shows

that P (u, v) ≈ P (u) ·P (v) to a good approximation. Hence, by definition, u and v are statistically independent. The

results are the same at other wall-normal distances in the logarithmic range and are not shown here for brevity.

A direct result of the above empirical observation is that the wall-normal velocity fluctuation w, being modeled

as proportional to the last addend in u, is also statistically independent of the spanwise velocity component. This

leads to trivial scaling predictions including 〈vw〉 = 0, 〈(v(x)− v(x+ r))(w(x)− w(x+ r))〉 = 0, etc., which are not

discussed in the previous section for brevity.

B. Single-point even-order central moments

Figure 5 (a) shows
〈
v2p
〉1/p

as functions of the wall-normal distance for p = 1, 2, 3, 4 on a semi-log scale. A

logarithmic scaling is found between z+ ≈ 100 and z/δ ≈ 0.3. Limited by the statistical convergence, we show

only data for p < 5. The logarithmic range of
〈
v2
〉

spans more scales than the streamwise counterpart, which is

only between z+ ≈ 3
√
Reτ and z/δ ≈ 0.15 [2, 34]. The measured slope A1,v ≈ 0.3 is about 25% smaller than

the measurement of 0.4 in a periodic channel at Reτ ≈ 5000 [32]. This difference in the log-law slopes is notable.

Unravelling the physical mechanism behind this difference, however, falls out of the scope of this work and therefore

is left for future investigation. Figure 5 (b) shows the measured slopes Av,p as a function of p. Ap − Ap−1 increases

as a function of p, and therefore the measurements are super-Gaussian, i.e., Av,p/Av,1 > [(2p − 1)!!]1/p. This is in

direct contrast with the streamwise velocity, where previous works have shown that the streamwise velocity statistics

are sub-Gaussian [13]. As far as the purpose of this work is concerned, the scalings in Eq. (11) are found, and the

data support the HRAP model.
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FIG. 5. (a)
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v2p
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as functions of the wall-normal distance for p = 1, 2, 3, 4. (b) The measured slope Ap,v/A1,v as a function

of the moment order p. The solid line corresponds to [(2p− 1)!!]1/p.
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FIG. 6. (a) 〈exp(qv)〉 as functions of z for q = ±0.33, ±0.67, ±1.00, ±1.33. Filled symbols are for positive q’s and hollow

symbols are used for negative q’s. The extent of the power-law scaling is 100 . z+, z/δ . 0.3, and this range is enclosed within

two solid lines. (b) Scaling exponents τv(q) (symbols). A quadratic fit around q = 0 leads τv(q) = 0.15q2 (the red solid line).

A fourth order polynomial, i.e., τv(q) = 0.055q4 + 0.15q2 (the yellow solid line), seems to be a good working approximation of

the data away from the origin. However, as shown in Eq. 13, only the second order term enters the logarithmic scalings of even

order moments.

C. Single-point MGFs

Figure 6 (a) shows the measured single-point MGFs for a few q values as functions of the wall-normal distance.

A power-law scaling is found within the wall-normal distance range 100 . z+, z/δ . 0.3, i.e., within the same wall-

normal distance range where
〈
v2
z

〉
follows a logarithmic scaling. It is worth noting that 〈exp(qv)〉 6= 〈exp(−qv)〉 in the

near-wall region, leading to a breakdown of the spanwise symmetry. The breakdown in symmetry is thought to arise

due to a finite wire separation between the two hot wires in the cross-wire probe. Effects becomes more prominent

close to the wall (see appendix A), leading to a noticeable breakdown in the v symmetry as the probe approaches the

wall. In figure 6 (b), the measured power-law exponent τv(q) is compared to Eq. (10). Furthermore, τv(q) ≥ Cq2,

which is consistent with a super-Gaussian scaling exponent τv(q). The constant C ≈ 0.15 (Eq. 10), leads to A1,v ≈ 0.3

(Eq. 12), i.e., the same as the measurement in section III B.

Limited by the data convergence, we have shown data for only −1.33 ≤ q ≤ 1.33. A larger |q| emphasizes rarer

events and therefore is more difficult for statistical convergence. The statistical convergence of a quantity f(v) may

be examined using the premultiplied p.d.f., i.e., f(v) ·P (v). Figure 7 shows the premultiplied p.d.f. P (v) · exp(qv) for

q = 1 and q = 2 at a specific wall-normal height z+ ≈ 600. The measured 〈exp(qv)〉 is the area under the premultiplied

p.d.f.. For q = 1, the premultiplied p.d.f. drops to ≈ 0 at both ends, and therefore 〈exp(v)〉 is statistically converged.

For q = 2, however, because rare events that contribute to 〈exp(2v)〉 do not have a sufficiently large sample, the
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scaling is empirically observed within 0.01 . r/δ . 0.1, which is marked with the two vertical lines. (b) same as (a) but for

the streamwise structure functions. The vertical lines enclose the region 0.1 < r/z < 1

premultiplied p.d.f. does not drop to 0 at the positive end of v, and therefore 〈exp(2v)〉 is not statistically converged.

For brevity, this exercise is only done one time for this one quantity. For all other statistics shown in this work, it is

implied that the data are statistically converged.

It follows from Eqs. (14) and (15) that the scaling transition is at τv(q) ≈ 0.5 and q ≈ 1.8. For this dataset, the

data are only statistically converged for |q| < 1.5, and therefore the scaling transition cannot be tested. For brevity,

we state without showing evidence that the two-point MGFs follow the expected power-law scalings for |q| < 1.5.

D. Spanwise structure functions and generalized two-point correlations

Figure 8 (a) shows Sp,v (defined in Eq. 21) at z+ ≈ 400, 800 as functions of the two-point displacement r/δ for

0.001 < r/δ < 1. Limited by the data convergence, we only evaluate Sp,v for p ≤ 3. Logarithmic scalings are found

within 0.01 < r/δ < 0.1 for Sp,v for p = 1, 2, 3. The spanwise structure functions are shown as functions of the

two-point displacement in figure 8 (b), and logarithmic scalings are found within 0.1 . r/z . 1. In conclusion, the

scalings in Eqs. (20) and (21) are found, and the data support the HRAP model.

E. Mixed MGFs

We investigate the functional behavior of mixed single-point MGFs. First, a few specific scalings in Eqs. (22), (24)

are compared to the data. Figure 9 (a) shows 〈exp(qu− qw)〉 as functions of the wall-normal distance. Power-law

scalings are found within the wall-normal distance range 600 . z+, z/δ . 0.2 for q < 0 and 100 . z+, z/δ < 0.2
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are at z+ = 100, 600, 2000. The bold solid lines indicates the power-law scalings for q = ±1.33. (b) Same as (a) but for

〈exp(qu− qw)〉 / 〈exp(qu)〉.
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FIG. 10. Same as figure 9 but for qu = qw = q.

for q > 0. The power-law region is more confined for negative q-valued MGFs than positive q-valued MGFs. The

same observation was made in Ref. [17], where the power-law scaling of 〈exp(qu)〉 extends more scales for q > 0

than for q < 0. The HRAP model is a model for flow in the logarithmic range, where fluid motions are dominated

by inertia. For a boundary layer at Reτ ≈ 10, 000, the logarithmic range is between z+ ≈ 400 and z/δ ≈ 0.2. The

predicted scaling are found in this region for both positive and negative q values. The fact that the model seems

to work still for positive q beyond the logarithmic range may suggest that positive streamwise velocity fluctuations

are inertial dominated even below z+ ≈ 400. This is possible because positive fluctuations are likely the results of

sweep motions, which comes from the upper part of the boundary layer. Figure 9 (b) shows W (q,−q; z) (defined

in Eq. 24) as functions of the wall normal distance. A plateau is found within the wall-normal distance ranges

where 〈exp(qu− qw)〉 follows a power-law scaling. Figure 10 (a) shows 〈exp(qu+ qw)〉 as functions of the wall-normal

distance and (b) shows W (q, q; z). Power-law scalings are again found. Different from W (q,−q; z), which is a function

of q, W (q, q; z) is a q-independent constant to a good approximation. As far as this work is concerned, the data are

in favor of the HRAP model.

A detailed comparison between the measured W (q,±q; z) and the Gaussian approximation are shown in figure 11.

According to Eq. (24),

W (q,−q; z) = exp(4Cuq
2), W (q, q; z) = 1. (26)

The constant Cu = 0.63 is measured in a previous study [17], and is half of the Townsend-Perry constant A1. The

measurements of W (q,±q; z) in the logarithmic region is

W (q,±q; z) =

∫
W (q,±q; z)d log(z)∫

d log(z)
(27)
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FIG. 12. (a) Measured log10(〈exp(quu+ qww)〉) at a fixed wall normal distance z+ = 1000 for qu, qw ranging from −1.5 to 1.5.

(b) results from Eq. (22). The pre-factor is Ce = 0.98. (c) log10(〈exp(quu+ qww)〉) at qu = 0.

where the integration is 100 < z+, z/δ < 0.2 for q < 0 and 600 < z+, z/δ < 0.2 for q > 0. The integration is based

on d log(z) instead of z to give equal weights to attached eddies of different scales. For W (q,−q; z), the data are

sub-Gaussian. For W (q, q; z), the data deviate slightly from unit at large |q|.
Last, we study the functional behavior of MGF 〈exp(quu+ qww)〉. We measure 〈exp(quu+ qww)〉 at z+ ≈ 1000

(a height corresponds to z/δ = 0.1) for qu, qw ranging from −1.5 to 1.5. The measurements are shown in fig-

ure 12 (a). Figure 12 (b) corresponds to Eq. (23). A constant Ce is used such that the difference between

log10(Ce(z/δ)
−Cuq

2
ueCu(qu−qw)2) and the measured log10(〈exp(quu+ qww)〉) is minimum in an L2 sense. Furthermore,

it is worth noting that we encountered difficulties when trying to directly evaluate log10(Ce(z/δ)
−Cuq

2
ueCu(qu−qw)2),

presumably due to insufficient numerical precision. Instead, here we evaluate −Cuq2
u log10(Ce(z/δ)) + Cu(qu −

qw)2 log10(e), which is analytically equivalent. According to figure 12 (a), events in the first and third quadrants

dominate [35]. Comparing figure 12 (a), (b), Gaussianity leads to stronger stretching in the direction of w. Figure

12 (c) shows the measured and the modeled 〈exp(qw)〉 (i.e. slices along u = 0 of figure 12 a and b) at z+ = 1000,

where it is evident that the Gaussian model under-predicts the empirical results. The fact that the Gaussianity leads

to stronger stretching than the measurements in figure 12, suggests that the wall-normal velocity is super-Gaussian.

A similar observation was made in Ref. [36], where super-Gaussianity was also found in the wall-normal compo-

nent. Except for the stretching in the qw axis, the model otherwise agrees well with the data. The results at other

wall-normal planes are very similar and are not shown here for brevity.

IV. CONCLUSIONS

The HRAP model is extended to account for the spanwise and the wall normal velocity fluctuations in the logarithmic

region. Following the HRAP model to its logic conclusions, we have provided scaling predictions for a few different
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flow statistics that involve v, and such statistics include the single-point, two-point moment generating functions,

streamwise structure function, generalized two-point correlations and mixed single-point MGFs. Empirical evidence

for these scalings is shown, and the data generally support the HRAP model. Measurements show that 〈exp(qv)〉 ∼
(δ/z)0.055q4+0.15q2 , exp(qw) ∼ exp(0.63q2) (cf. Figures 6 and 12). The proportional constants are left undetermined

as they depends on the flow and are not universal. The constant Cu = 0.63 corresponds to half of the Townsend-Perry

constant A1/2. The constant 0.15 is half of spanwise counterpart of the Townsend-Perry constant, i.e., the slope

of the logarithmic scaling of
〈
v2
〉
. The streamwise moment generating function was already measured in Ref. [17].

The above formulations can be used to determine the scaling of the central moments and the slope of the resulting

logarithmic scalings. The intercepts of these logarithmic scalings, however, depends on the proportional constants

in the above formulations and are not universal. In this work, we have examined moments up to the 6th order.

Converged statistics of higher order moments will require more data and will be examined in future works. As the

HRAP model can already account for the streamwise velocity fluctuation [6], by accounting for both the spanwise and

the wall-normal velocity fluctuations, the model provides a complete description of velocity fluctuations in all three

Cartesian directions in the logarithmic region. It is worth noting that we have put our emphasis on identifying and

verifying the forms of the predicted scalings, not the constants in them, which is by itself an interesting topic that

worth investigating in the future.

Although HRAP itself does predict the exact values of the constants in the various scalings, it is worth noting

that the model as is can already be used for predictive modeling. For example, in LES wall modeling, if one needs

information about u2 in the first cell, where the eddies are not resolved, one could adopt the logarithmic scaling

u2 ∼ log(z), and use a dynamic procedure to determine the coefficients from the resolved motions.

The obtained new physical insights may also be incorporated into wall-modeled turbulence simulations. For this, it

is necessary to make use of numerical methods that easily encapsulate the high-order moment information of near-wall

flow fields. The recently popularized discontinuous Galerkin method [37–39] based on variational formulation could

be a good candidate.
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Appendix A: Effects of vertical displacement of hot wires in a cross-wire probe

Because of the symmetry in the spanwise direction, one expects 〈exp(qv)〉 = 〈exp(−qv)〉. This expectation bears

out for z+ & 200, but for z+ . 200, negative-q-valued MGFs are consistently higher than positive-q-valued MGFs (see

Fig. 6). This asymmetry is highlighted in the p.d.f. of the spanwise velocity fluctuation (shown in Fig. 13), where

the p.d.f. of v is shown as functions of both v+ and −v+. The asymmetry is likely due to the finite displacement of

the two hot wires (in a cross-wire) in the wall-normal direction (see Fig. 14 for a sketch of the wire setup). Because of

this setup, measurements of the spanwise velocity in the positive-y direction and in the negative-y directions are not

at the same wall-normal height, leading to the observed asymmetry in Fig. 13. As sketched in Fig. 14, the top wire

is more sensitive to v fluctuations in the positive-y direction and the bottom wire to v fluctuations in the negative-y

direction. While the effect of the displacement ∆z is negligible for z � ∆z, this displacement becomes significant for

measurements in the near wall region.

To quantify the effect of the above mentioned misplacement on 〈exp(|q| v)〉, 〈exp(− |q| v)〉, we use the following

quantity

ρa =
〈exp(qv)| v > 0〉
〈exp(−qv)| v < 0〉

.
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FIG. 13. The p.d.f. of the spanwise velocity v at z+ = 42. The p.d.f.’s are shown as functions of both v+ and −v+ to emphasize

the asymmetry in the measurements.

FIG. 14. A sketch of the setup of a cross-wire that measures both the streamwise and the spanwise velocities. The cross-wire

is placed at a wall normal distance z. The two wires are displaced by a small distance ∆z (to prevent a short circuit). (a) side

view. (b) top view.

Without loss of generality, we take q > 0. Because 〈exp(qv)〉 ∼ (z/δ)
−τv(q)

, ρa is approximately

ρa =

(
z −∆z/2

z + ∆z/2

)−tauv(q)

. (A1)

The displacement ∆z is constant for a given cross-wire. For a fixed q, ρa is 1 for large z values; for a fixed z, ρa

deviates from unit as q increases, leading to the observed asymmetry in Fig. 6. The distance between the two wires

is 2 mm. We compare Eq. A1 to data in figure 15. The comparison is only meaningful in the wall-normal distance

range where a power law scaling of 〈exp(qv)〉 is expected. The data is not inconsistent with our interpretation. It is

worth noting that this asymmetry is not because of the finite span of the hot wire. Finite span of a hot wire leads to

spatially filtering of the velocity signal [40, 41], and can be highlighted using conventional central moments.
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